kırılma açısı / Sınır açısı - Vikipedi

Kırılma Açısı

kırılma açısı

Işığın Kırılması (Konu Anlatım)

Işık ışınları saydam bir ortamdan başka bir saydam ortama geçerken ışınların bir kısmı yansıyarak geldiği ortama dönerken, bir kısmı da ikinci ortama, doğrultusu ve hızı değişerek geçer. Işığın ikinci ortama geçerken doğrultu değiştirmesine ışığın kırılması denir.


Kırılmanın Özellikleri:
1-Gelen ışın, normal ve kırılan ışın aynı düzlemdedir.
2-Az yoğun ortamdan çok yoğun ortama geçen ışık, normale yaklaşarak kırılır.


3-Çok yoğun ortamdan az yoğun ortama geçen ışık, normalden uzaklaşarak kırılır.
4-Normal üzerinden gelen ışın ( dik gelen ışın), diğer ortama geçerken kırılmaya uğramaz (dik geçer).

 


Camın yoğunluğu > suyun yoğunluğu > havanın yoğunluğu olduğuna göre, bu saydam ortamlardan, diğerine geçişleri inceleyelim:

Günlük hayatınızda kırılma olayın su dolu bardağa koyduğumuz bir kalemin görüntüsündeki kırılmada net olarak görebiliriz.



Beyaz Işığın Renklerine Ayrılması





Şekildeki prizmaya gönderilen beyaz ışık renk karışımı olduğundan bu renkler havadan farklı yoğunluğa sahip cam prizmadan geçerken, farklı miktarlarda kırılırlar. En az kırmızı en çok da mor ışın kırılır.



Aynı saydam düzleme şekildeki gibi eşit gelme açılarıyla gönderilen kırmızı ve mor ışınlar aynı miktarda kırılmaz, mor daha çok kırıldığı gözlenir. Yani aynı ortam, farklı ışınlar için farklı yoğunluğa sahipmiş gibi davranır.


Sınır Açısı


Gelme açısı büyüdükçe kırılma açısı da büyür ve ışığın kırılma açısı 90° olduğu andaki gelme açısına sınır açısı denir. Örneğin, sudan havaya gelen ışınlar için sınır açısı 48°, camdan havaya gelen ışınlar için ise 42° dir.
Eğer ışık ışınları sınır açısından daha büyük açıyla gelirse ikinci ortama geçemez ve geldiği ortama normalle eşit açı yaparak geri döner yani kırılmaya uğramaz, yalnızca yansır.
Bu olaya tam yansıma denir.


Görünür Derinlik
Bulunduğumuz ortamdan yoğunlukları farklı saydam ortamlardaki cisimlere baktığımızda, bulundukları yerlerden farklı yerlerde görürüz. Mesela akvaryuma üstten bakıldığında balıklar yüzeye çok yakın görülür. Su dolu havuza üstten bakıldığında, havuzun derinliği, olduğundan daha yakın algılanır. Sonuç olarak az yoğun ortamdan çok yoğun ortamdaki cisimlere bakan gözlemciler cismi daha yakında, çok yoğun ortamdan az yoğun ortama bakan gözlemciler ise daha uzakta görür.
 

Gök Kuşağı Nasıl oluşur?

 

 Yağmur damlasının içine girince kırmızı, turuncu, sarı, yeşil, mavi, lacivert ve mor renklere ayrışır. Mor renk çemberin içinde kırmızı ise en dışındadır.

Yağmur damlası çocukken oynadığımız misket veya bilye gibi küresel saydam bir şekildedir. Güneş ışığı bu kendi tarafındaki yüzeyinden doğrudan içine girer. İçinde renklere ayrışır ve kürenin arka duvarına vurarak gerisin geriye yansır. Işığın damlanın ön yüzünden değil de arka yüzünden yansımasının nedeni içbükey, dışbükey mercek özelliklerindendir.

Ayrışmış renkler, içbükey arka yüzden çeşitli açılarda yansımaları sonucu gözümüze sırayla dizili renklerden oluşmuş bir bant şeklinde görünüyorlar. Gökkuşağını görebilmek için Güneş, biz ve yağmur damlaları, muhakkak belirli bir açıda dizilmek zorundayız. Ama daha önemlisi milyonlarca yağmur damlasından yansıyan ışınların gözümüze geliş açıları mutlaka aynı olmalıdır ki biz gökkuşağını görebilelim.

Yağmur damlalarından yansıyan ışınların gözümüzde odaklaşabilmeleri için bir daire şeklinde dizilmiş olmaları gerekir. Aslında o bölgedeki bütün yağmur damlaları gelen ışığı renklere ayrıştırarak yansıtırlar ama sadece bir yarım daire içinde olan yağmur damlalarından yansıyanlar gözümüze odaklaşırlar.

Biz de sadece o yağmur damlalarından gözümüze gelen renklerine ayrılmış ışınları görebildiğimizden gökkuşağını da yarım daire şeklinde görürüz. Bazen bir uçaktan veya yüksek bir dağdan baktığımızda gökkuşağını tam daire şeklinde görmemiz de mümkün olabilmektedir.

Güneş ne kadar yüksekse gökkuşağı dairesi de o kadar aşağı iner. Bunun içindir ki yedi renkli gökkuşağını sabah ve akşam yağışlarından sonra daha çok görürüz.

Genellikle fark edilmez ama gökkuşağı daima içice iki halkadan oluşur. İkinci kuşak pek dikkat çekmez. Bir ikinci zayıf kuşağın daha bulunmasının nedeni bazı güneş ışıklarının su damlasının iç yüzeyine bir kez değil iki kez çarpmalarıdır. Böylece parlaklıklarını yitiren ışıklardan oluşan ikinci gökkuşağı zar zor görülür. Birinci kuşakta kırmızı renk şeridin en dışında iken ikinci kuşakta en içtedir. Diğer renklerin sıralamaları da terstir.


Gökyüzü Neden Mavidir?


Gökyüzünün mavi görünmesinin tek sebebi kırılma hadisesidir.
Güneş ışınları atmosfere girdiğinde atmosferdeki gaz moleküllerine ve toz parçacıklarına çarparak saçılır. Gün ışığı değişik dalga boylu birçok ışından oluşur. En kısa dalga boylu mavi ışınlar atmosferin üst tabakalarındaki küçük parçacılar tarafından hemen saçılırlar. Fakat kırmız ışık (ki en büyük dalga boylu ışıktır!) saçılmak için daha büyük parçacıklara çarpmak zorundadır.
Gökyüzü açık olduğunda, mavi ışık diğer ışıklara oranla en fazla saçılan ışıktır. Bu yüzden de gökyüzü mavi görünür. Mesela gökyüzü yoğun bulutlarla veya dumanla dolu olduğunda, tüm ışınlar nerede ise aynı oranda saçılır. Bu da gökyüzünün gri renkte görünmesine sebep olur.

Deniz Neden mavidir?


 


Su renksiz ve saydam ve bir sıvıdır. Ancak beyaz renkteki bir küvete veya havuza doldurulan suyun aldığı renkten de görüldüğü gibi, kalın tabakalar halinde yeşil-mavi bir renk alır.
Denizin mavi renginin sebebi, gökyüzünün renginin mavi olmasıyla aynıdır ama sanıldığı gibi gökyüzünün maviliğini yansıttığı için deniz mavi renkte görülmez. Aslında atmosferde mevcut, azot, oksijen, karbondioksit gibi bütün gazlar deniz suyunda da bol miktarda bulunurlar.
Deniz suyunun rengi su moleküllerinin ışığı emiş ve yansıtış özelliklerine bağlıdır. Beyaz ışık dediğimiz güneş ışığında bütün renkler vardır. Deniz suyu molekülleri aynen atmosferde olduğu gibi, bu ışığın dağılımındaki kırmızı tarafındakileri emerler, mor tarafındakileri yansıtırlar. Deniz de bu nedenle mavi renkte görünür.
Ne var ki denizin rengi her yerde aynı değildir. Çeşitli yerlerde parlak mavi, koyu mavi, yeşil, turkuvaz hatta kırmızımsı renkler alır. Bu farklılıkları suyun sıcaklığı, derinliği, içinde yaşayan canlılar, dip tabiatı, tuz oranı gibi etkenler yaratırlar. Burada güneş ışığının atmosferde, bulutlarda tutulan miktarı da önemlidir.
Güneş ışığının neredeyse yarısı suyun bir metre derinliğinde soğurulmuş olur. On bir metreye varıldığında ise sadece onda birinin bu derinliğe ulaşabildiği görülür. metreden sonra sadece fosforlu organizmaların biraz aydınlattıkları, mutlak karanlık hüküm sürer. Bu nedenle denizin renginde derinlik de önemli bir faktördür.



Işığın Kırılması

Refraction

Bir saydam ortamdan başka bir saydam ortama geçen ışık demetinin bir kısmı bu iki ortamı ayıran yüzey üzerinde yansırken, ışık demeti doğrultusunu değiştirerek diğer ortama geçer. Işığın bir saydam ortamdan diğerine geçerken doğrultusunu değiştirmesine ışığın kırılması denir.

Kırılma Kanunları
Gelen ışın, kırılan ışın ve normal aynı düzlemde bulunur.
Belirli ortamlar için geliş açısının sinüsünün kırılma açısının sinüsüne oranının sabit olur. (sin i / sin r = a) Snell kanunu.
Işık Yoğunluğu az ortamdan, yoğunluğu fazla olan ortama girdiğinde hem daha fazla açıyla kırılır, hem de hızı azalır.



Gelen ışığın, geliş açısı büyüdükçe kırılma açısı da büyür.
Kırıcı ortamın yoğunluğu arttıkça kırılma da daha büyük olur.
Kırılan ışın doğru boyunca yayılır.
Terk edilen hat, kırılan hat ve normal tek bir düzlemde yani görüntü yüzeyinde yer alır.
Dik ışın kırılmaz.



Kırılma saydam ortamın yoğunluğuna bağlıdır. Yukarıdaki örnekte hava içinden 45º ile gelen ışın, su içine girerken 32º açı ile kırılmaktayken, Titanyum beyazı içine girince 16º açı ile kırılmaktadır. Işık yoğunluğu az ortamdan yoğunluğu çok ortama girdiğinde hızı azalır. Yani belirli bir dalga uzunluğu ile gelen ışın, ortam değiştirdiğinde eğer bu ortam daha yoğunsa dalga uzunluğu kısalır.



Aynı zamanda gelen ışığın belirli bir kısmı saydam cismin yüzeyinden geri yansımakta ve bir kısmı sadece cisim içine girebilmektedir. Vakumlu bir ortamda yapılan deneyler çeşitli saydam cisimlerden geçen ışınların geçiş yüzdeleri aşağıda görülmektedir.




Işığın Kırılması

Işık ışınlarının saydam bir ortamdan yoğunluğu farklı başka bir saydam ortama geçerken doğrultularını değiştirirler. Bu olaya kırılma denir.

Bir su bardağı boşken kaleminizi içine koyup değişik açılardan kaleme bakarak görünüşünü inceleyiniz. Şimdi ise bardağa su koyup aynı işlemi tekrar ediniz. Öncekine göre kalemin görüntüsünün nasıl değiştiğini seafoodplus.info boşken bardağa bir metal para koyunuz. Bardağa bir pipet aracılığıyla bakarak metali görmeye çalışınız şimdi ise bardağı su ile doldurunuz ve çubuk vasıtasıyla tekrar bakınınız. Metal para biraz önce baktığınız yerde mi?

Şimdi ise size bir soru hiç balık tutmaya gidip elinizle balık yakalamaya çalıştınız mı? Balıkları yakalayamadığınızı fark etmişsinizdir. Sebebini açıklar mısınız? Yağmur yağdıktan sonra gök kuşağı oluştuğunu görmüşsünüzdür. İşte bunların hepsinin ana sebebi kırılmadır.Sıcak yaz günlerinde yollarda su birikintisi görürüz ve ya çölde serap dediğimiz olayları görürüz işte bunların hepsi ışığın kırılmasından kaynaklanan olaylardır.

Kırılma Kanunları

1-Gelen ışın, normal , kırılan ışın ve ayırma yüzeyi aynı düzlemdedir.
2- Işık ışınları az yoğun ortamdan çok yoğun ortama geçerken normale yaklaşarak kırılır.
3- Çok yoğun ortamdan az yoğun ortama geçerken normalden uzaklaşarak kırılır.

İki saydam ortamı birbirinden ayıran düzleme ayırma yüzeyi denir. Işığın ayırma düzlemine değdiği noktadan bu düzleme çizilen dik doğru normal adını alır. Gelen ve kırılan ışının izlediği yollar ise gelen ışın ve kırılan ışın adını alır. Gelen ışının normal ile yaptığı açıya gelme açısı; kırılan ışının normal yaptığı açıya ise kırılma açısı denir. Gelen ışın , normal ve kırılan ışın aynı düzlem içindedir.

Kırıcılık özelliği saydam ortamın yoğunluğu ile ilgilidir. Ortamların bu özellikleri kırılma indisi denilen sayılarla ifade edilir. Örneğin havanın kırılma indisi 1 , camın kırılma indisi suyun kırılma indisi elmasın kırılma indisi dır. Bu rakamlar ışığın bu ortamlardaki hızarıyla orantılıdır. Bu rakamlar küçük olan az kırıcı büyük olan ise çok kırıcı olarak da düşünebiliriz.

Tam Yansıma

Çok yoğun ortamdan gelen ışının gelme açısını büyültürsek kırılma açısı da büyüyecektir. Kırılma açısı 90 dereceye ulaştığında gelme açısı sınır açısına ulaşır. Sınır açısında daha büyük açıyla gelirse ışık az yoğun ortama geçemez ve ayırma yüzeyinden yansır bu olaya tam yansıma denir.






7. Sınıf Fen Bilimleri Işığın Kırılması konu anlatımı

Haberin Devamı

Örnek: Bir araç kaygan bir yolda dönüş anında bir miktar savrulur. Aynı durum ışık için de geçerlidir. Herhangi bir maddenin içinde geçerken kırılma yaşar ve doğrultusu değişir. Yol üzerindeki araç düz şekildeki derken herhangi bir biçimde savrulmaz. Aynı örnek ışık için de geçerliliğini korur. Yani düz bir nokta da herhangi bir maddeye denk gelmediği sürece Işık doğrultusunu değiştirmeden yoluna devam eder.

Işığın Kırılma Kanunları Nedir?

 Işığın belli başlı bazı kırılma kanunları bulunmaktadır. Yani Işığın kırılması bu kanunlar içerisinde gerçekleşir. Bu kanunların dışarısına asla çıkamaz.

 - Gelen ışın, normal ve kırılan ışın aynı düzlem içerisinde yer alır.

 - Işık az yoğun ortamdan çok yoğun ortama geçiş yaparken normale yaklaşır ve yavaşlama gerçekleşir.

 - Işık çok yoğun ortamdan az yoğun ortama geçiş yaparken normalden uzaklaşır ve hızı artar.

 - Yüzey olarak normalin üzerinden gelen ışığın kırılma yaşamaz ancak hızında değişiklik olur.

 Bu kanunlar ile beraber ışığın hızında farklılık yaşanır ya da kırılma ortaya çıkar.

Işığın Kırılması ile İlgili Bilinmesi Gereken Kavramlar

 Işığın kırılması esnasında ortaya çıkan bazı durumlar eşliğinde, bilinmesi gereken bazı kavramlar mevcuttur. Şimdi gelin bu kavramlara beraber bakalım.

Haberin Devamı

Normal: Gelen ışının yüzeye değdiği nokta içerisinde çizilen dik doğruya normal denir.

Gelen ışın: Işık kaynağından gelen ışına denir.

Kırılan Işın: Diğer ortama geçmesi ile beraber ışığın ilerleme doğrultusu.

Gelme açısı: Gelen ışının normal ile yaptığı açıya gelme açısı denir.

Kırılma açısı: Kırılmış olan ışının normal ile yaptığı açıya denir.

Kırılma Olayının Özellikleri

 Kırılma olayının belli başlı bazı özellikleri mevcuttur. Yani Işığın kırılması ile ortaya çıkan özellikler de denebilir.

 - Gelme açısı büyür ise aynı şekilde kırılma açısı da büyür.

 - Az yoğun ortamdan çok yoğun olan ortama bakıldığı zaman, cisimler olduklarından çok daha yakın görünürler.

Haberin Devamı

 - Çok yoğun ortamdan az yoğun ortama bakıldığı zaman, cisimler olduklarından çok daha uzak görünürler.

 - Işık gerekli koşullar altında geldiği yoldan geri gidebilir. (Tersinir.)

Tam yansıma: Işık ışınlarının gelme açısı ele alındığı zaman eğer sınır açısından büyükse, Işık ışınları diğer ortama geçmez ve geri dönüş yaparak geldikleri açı ile beraber yansırlar. Buna da tam yansıma denir.

Sınır açısı: Işık çok yoğun ortamdan az yoğun ortama geçerken, kırılma açısının 90 derece olduğu durumlar söz konusuyken gelme açısı olarak bilinir.

Not: Işığın hızı farklı ortamlardan geçerken değişkenlik gösterir. Bu kesinlikle unutulmamalıdır. Özellikle çok yoğun ortamlardan geçerken hız azalır.

kaynağı değiştir]

Işık bir ortamdan diğerine geçerken, hızı her iki ortamda farklı olduğu için kırılır. Herhangi bir maddesel ortamdaki ışığın hızı boşluktakinden daha azdır. Gerçekte, boşlukta ışık maksimum hızda(c) ilerler. Bir ortamın " n" kırılma indisini, ışığın boşluktaki hızının (c), ortamdaki hızına (V) oranı belirler. Yani kırılma indisi (1)' den büyük ve boyutsuz bir sayıdır; çünkü V daima c 'den küçüktür.

Işık bir ortamdan diğerine ilerlerken frekansı değişmez. Sağdaki görsele göre dalga cepheleri birinci ortamdaki A noktasında bulunan gözlemciyi belirli bir frekans ile geçip 1. ve 2 ortamlar arasındaki sınıra gelmektedirler. İkinci ortamdaki B noktasında bulunan gözlemciyi geçen dalga cephelerinin frekansı, birinci ortamdaki A noktasına ulaşan dalga cephelerinin frekansına eşit olmalıdır. Bu olmasaydı, ya dalga cepheleri sınırda bulunacaklar veya sınırda olacaklardı. Bunun böyle olması için ışık ışını bir ortamdan, diğerine geçerken frekans sabit olmalıdır. Bundan dolayı V=f* bağıntısının her iki ortamda geçerli olması ve f1=f2=f olması nedeniyle V1=f ve V2=f olduğunu görürüz . Kırılma indisi ve dalga boyu arasındaki ilişki, bu iki denklemi birbirine oranlayalarak elde edilir.

Birinci ortam boşluk veya hava ise n1=1'dir. Böylece herhangi bir ortamın kırılma indisi oranı ile ifade edilebilir. Burada, ışığın boşluktaki dalga boyu ve ise kırılma indisi n olan ortamdaki dalga boyudur. Eşitlik 3'ü eşitlik 1'e yerleştirirsek n1= elde ederiz. Bu, Snell yasasının en yaygın olarak kullanılan pratik biçimidir.

nest...

batman iftar saati 2021 viranşehir kaç kilometre seferberlik ne demek namaz nasıl kılınır ve hangi dualar okunur özel jimer anlamlı bayram mesajı maxoak 50.000 mah powerbank cin tırnağı nedir